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Abstract
Objective. Transcranial direct current stimulation (tDCS) has been broadly used to modulate brain
activity with both bipolar and high-definition montages. However, tDCS effects can be highly
variable. In this work, we investigated whether the variability in the tDCS effects could be predicted
by integrating individualized electric field modeling and individual pre-tDCS behavioral
performance. Approach.Here, we first compared the effects of bipolar tDCS and 4× 1 high-
definition tDCS (HD-tDCS) with respect to the alleviation of visual crowding, which is the
inability to identify targets in the presence of nearby flankers and considered to be an essential
bottleneck of object recognition and visual awareness. We instructed subjects to perform an
orientation discrimination task with both isolated and crowded targets in the periphery and
measured their orientation discrimination thresholds before and after receiving 20 min of bipolar
tDCS, 4× 1 HD-tDCS, or sham stimulation over the visual cortex. Individual anatomically
realistic head models were constructed to simulate tDCS-induced electric field distributions and
quantify tDCS focality. Finally, a multiple linear regression model that used pre-tDCS behavioral
performance and tDCS focality as factors was used to predict post-tDCS behavioral performance.
Main results.We found that HD-tDCS, but not bipolar tDCS, could significantly alleviate visual
crowding. Moreover, the variability in the tDCS effect could be reliably predicted by subjects’
pre-tDCS behavioral performance and tDCS focality. This prediction model also performed well
when generalized to other two tDCS protocols with a different electrode size or a different
stimulation intensity. Significance. Our study links the variability in the tDCS-induced electric field
and the pre-tDCS behavioral performance in a visual crowding task to the variability in post-tDCS
performance. It provides a new approach to predicting individual tDCS effects and highlights the
importance of understanding the factors that determine tDCS effectiveness while developing more
robust protocols.

1. Introduction

Transcranial direct current stimulation (tDCS) is a
non-invasive neuromodulation method that deliv-
ers a weak and constant current to cortical areas via

electrodes attached to the scalp surface. Conventional
bipolar tDCS uses two large rectangular pads and
leads to diffuse brain modulation [1–3]. To improve
stimulation focality and accuracy, high-definition
tDCS (HD-tDCS) was introduced, which uses four
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return electrodes surrounding a stimulation electrode
[1–3]. Both the tDCS protocols have been widely
used to treat neuropsychiatric disorders [4–6], and to
modulate motor [7–9], sensory [10–12], and cognit-
ive functions [9, 13].

Despite showing promise for numerous applic-
ations, tDCS has received considerable criticism
regarding the fact of ubiquitous inter-individual vari-
ability in its modulatory effects [14–16]. This makes
it challenging for researchers to replicate tDCS out-
comes and therefore limits its potential use cases.
It has been suggested that the prevalence of inter-
individual variability in the effects of tDCS may be
explained by individual differences in pre-tDCS beha-
vioral performance [17–20] or biological parameters
[21–25]. For example, patients’ pre-tDCS cognitive
and language performance may predict the effects of
tDCS on primary progressive aphasia [17]. Several
depression severity-related factors have been identi-
fied as potential clinical predictors of the response to
tDCS in depressed patients [18]. Meanwhile, compu-
tational modeling studies have shown that anatom-
ical factors, such as brain atrophy [21], cerebrospinal
fluid (CSF) thickness [22], uncertain head tissue
conductivity [23], and the anisotropic conductivity
of head tissues [24, 25] influence the strength and
focality of the stimulation-induced electric field in the
brain. Apart from qualitatively clarifying the influ-
ence of these factors, using them to quantitatively
predict individual tDCS effects is of great signific-
ance. Previous prediction models focused mainly on
the biological parameters such as gray matter (GM)
density [26], white matter integrity [27], and head
volume [28], but ignored the role of tDCS-induced
electric field in predicting post-tDCS behavioral per-
formance. In addition, these models mainly focused
on bipolar tDCS, but did not test their generalizabil-
ity to other tDCS protocols.

In the current study, we investigated whether
the combination of individual electric field model-
ing and pre-tDCS behavioral performance can pre-
dict individual post-tDCS behavioral performance.
Here we adopted visual crowding as the experimental
paradigm to test the effectiveness of our prediction
model for tDCS. Visual crowding is the inability to
identify targets in the presence of nearby flankers
(illustrated in figure 1). This is a ubiquitous phe-
nomenon in spatial vision that has been observed
in many stimuli, including oriented gratings, letters,
and faces [29]. Visual crowding is considered as an
essential bottleneck of object recognition and visual
awareness [29, 30]. Alleviating the visual crowding
effect can improve peripheral vision and may there-
fore have potential clinical implications for patients
with visual deficits such asmacular degeneration [30]
and amblyopia [31]. It has been demonstrated that
offline bipolar tDCS on posterior parietal cortex is
effective in alleviating visual crowding [32]. Notably,

Figure 1. Schematic description of visual crowding. When
fixating at the black dot on the left, identification of the
target ‘D’ is easy in the isolated condition (top). However,
in the crowded condition, i.e. when the target ‘D’ is
presented with the nearby flankers ‘C’ and ‘H’,
identification becomes difficult or impossible (bottom).

event-related potential and functional magnetic res-
onance imaging studies on the neural mechanisms
of visual crowding have shown that early visual cor-
tex (i.e. V1 and V2) plays an important role in visual
crowding [33–37]. Therefore, we speculate that tDCS
on early visual cortex may also be able to allevi-
ate visual crowding by modulating the related neural
activities.

In this work, we conducted a single-blind sham-
controlled study to investigate the effects of both
bipolar tDCS and 4 × 1 HD-tDCS on visual
crowding. To demonstrate the visual crowding effect,
subjects were instructed to perform an orienta-
tion discrimination task under two conditions: with
isolated and crowded targets. The anodal elec-
trode of tDCS was placed over early visual cortex.
Furthermore, we constructed realistic head models
to simulate the tDCS-induced electric field and cal-
culate the stimulation focality of each subject. We
found that HD-tDCS was effective in alleviating the
visual crowding effect, while the modulatory effect
of bipolar tDCS was not significant. More import-
antly, we found that the inter-individual variability
of the tDCS effect on visual crowding could be pre-
dicted by a model including both individual stimula-
tion focality and pre-tDCS behavioral performance as
factors. Finally, the proposed prediction model could
be generalized to other two tDCS protocols that used
a different electrode size or a different stimulation
intensity.

2. Methods

2.1. Participants
A total of 75 subjects (31 males, 19–30 years old)
were recruited and randomly assigned to one of
five groups: a HD-1 mA tDCS group (where sub-
jects received HD-tDCS at a stimulation intensity of
1 mA, n = 15, 4 males), a bipolar-25 tDCS group
(where subjects received bipolar tDCS at a stimu-
lation intensity of 1 mA, electrode size = 25 cm2,
n = 15, 8 males), a HD-2 mA tDCS group (where
subjects received HD-tDCS at a stimulation intensity
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Figure 2. Experimental design and tDCS montages. (a) Schematic description of an orientation discrimination trial with the
crowded targets. (b) Visual stimuli used in the isolated and crowded conditions. (c) tDCS montages for subjects with visual
stimuli appearing in the lower-right visual quadrant. Black dot represents the fixation point. (d) V1, V2, and V3 based on the
HCP-MMP atlas.

of 2 mA, n = 15, 7 males), a bipolar-8 tDCS group
(where subjects received bipolar tDCS at a stimu-
lation intensity of 1 mA, electrode size = 8 cm2,
n = 15, 6 males), and a sham stimulation group
(where subjects received a sham stimulation, n = 15,
6 males). The first two tDCS protocols were com-
monly used in previous studies, while the last two
tDCS groups were designed to test the generaliz-
ation of the prediction model based on the first
three groups to different tDCS protocols. All subjects
were right-handed, reported normal or corrected-
to-normal vision, and had no known neurological
or visual disorders. Written informed consent was
obtained from all subjects. All experimental proced-
ures were approved by the human subject review
committee of Peking University.

2.2. Stimuli, task design, and apparatus
Visual stimuli and task design were similar to exper-
iment 1 of our previous study [32]. The experiment
consisted of three phases: a pre-tDCS behavioral per-
formance test (Pre), an offline tDCS phase, and a
post-tDCS behavioral performance test (Post). The
three phases were conducted continuously with one
phase carried out immediately after the preceding
one. In the tDCS phase, subjects received 20 min of
bipolar tDCS, 1 × 4 HD-tDCS, or sham stimula-
tion. Before and after tDCS, subjects were instructed

to perform an orientation discrimination task with
both isolated and crowded targets (stimulus position:
either in the lower-left or lower-right visual quadrant;
figures 2(a) and (b)). These two tasks are hereafter
referred to as the ‘isolated condition’ and ‘crowded
condition’ respectively. Ten QUEST staircases [38]
of 40 trials, with five staircases for each condition,
were completed alternately between the two condi-
tions. Visual stimuli were displayed on an Cambridge
Research Systems—Display++ LCDMonitor 32 inch
monitor (spatial resolution: 1920 × 1080; refresh
rate: 120 Hz) with a gray background (luminance:
34.8 cd m−2). Subject head positions were stabilized
with a head and chin rest, and the viewing distance
was 70 cm. During the experiments, subjects were
asked to maintain their fixation on a black dot at the
center of the display, and their eye positions were
monitored with an Eyelink 1000 Plus eye-tracking
system.

2.3. tDCS protocol
tDCS was applied using a battery-powered appar-
atus (StarStim32; Neuroelectrics Inc.). We used two
saline-soaked sponge electrodes for the bipolar tDCS
groups and five conductive gel-covered PISTIM
Ag/AgCl electrodes for the HD-tDCS groups. The
anodal electrode used for all tDCS groups was placed
over the visual cortex of the hemisphere contralateral
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to the visual stimulus, i.e. at O1 for subjects with tar-
get gratings presented in the lower-right quadrant,
and at O2 for subjects with target gratings presen-
ted in the lower-left quadrant. The cathodal electrode
used for bipolar tDCS groups was placed at Cz. For
the HD-tDCS groups, the four return electrodes were
placed either at P9, Iz, PO3, and P4 if the anodal elec-
trode was placed at O1, or at P10, Iz, PO4, and P3
if the anodal electrode was placed at O2. All positions
were determined according to the international 10–10
electroencephalogram system (figure 2(c)). During
tDCS, the impedance was kept below 10 KΩ. For the
tDCS groups, the current was ramped up to a specific
intensity (2 mA for the HD-2 mA tDCS group, and
1 mA for the other groups) over 30 s, held constant
for 20 min, then ramped back down to zero over 30 s.
For the sham group, the current was ramped up to
1 mA over 30 s then held constant and switched off in
next 5 s.

2.4. MRI data acquisition
To perform individual simulation of the tDCS-
induced electric field, T1-weighted MRI data were
collected using a 3 T Siemens Prisma MRI scan-
ner with a 3D-MPRAGE sequence (TR = 2530 ms,
TE= 2.98 ms, voxel size: 1× 1× 1 mm3). Forty-two
subjects (HD-1 mA group: 9, bipolar-25 group: 13,
bipolar-8 group: 9, HD-2 mA group: 11) participated
in the MRI data acquisition procedure.

2.5. Electric field simulation
We used SimNIBS version 3.2 to calculate the distri-
bution of the electric field induced by tDCS using the
finite elementmethod [39, 40]. Individual headmod-
els were reconstructed from the T1-weighted struc-
tural MRI data for each subject. Scalp, skull, CSF,
GM, and white matter were segmented automatic-
ally, and the corresponding electric conductivity val-
ues were set as 0.465 S m−1, 0.01 S m−1, 1.654 S m−1,
0.275 S m−1, and 0.126 S m−1, respectively [41].
PISTIM electrodes weremodeled as a 2mm thick cyl-
inder with a 2 mm thick conductive gel layer. The
electric conductivity values of the electrode and gel
were 5.8 × 107 S m−1 and 0.3 S m−1 [42], respect-
ively. The sponge electrodes weremodeled as a 1mm-
thick rubber pad enclosed by a 3 mm-thick sponge.
The electric conductivity values of the rubber pad and
soaked sponge were 29.4 S m−1 [43] and 1.4 S m−1

[42], respectively. The peak electric field strength and
focality were computed from the simulation results
per subject and stimulation protocol. Focality was
quantified as the area of the GM region where the
electric field strength exceeded 0.1 V m−1 across the
whole brain in subject space [44]. Moreover, V1, V2,
and V3 were defined for each subject by the HCP-
MMP atlas [45]. Figure 2(d) showed V1, V2, and
V3 of a subject in the bipolar-25 tDCS group. We
further quantified the focality in V1 (referred to as
focality-V1), V2 (referred to as focality-V2), and V3

(referred to as focality-V3) by calculating the area
of the GM region where the electric field strength
exceeded 0.1 V m−1 in V1, V2, and V3, respectively.
Thus, a protocol with a smaller focality value would
generate a more focal stimulation effect. To calculate
the average electric field distributions and the devi-
ations, simulation results were transformed into the
fsaverage space [46–48].

2.6. Data analysis
We quantified subjects’ pre-tDCS and post-tDCS
behavioral performance as the mean threshold of
the five QUEST staircases at Pre and Post, respect-
ively. Subjects’ behavioral performance improvement
was calculated as: (pre-tDCS behavioral perform-
ance − post-tDCS behavioral performance)/pre-
tDCS behavioral performance × 100%. We then
compared the discrimination thresholds for the isol-
ated and crowded conditions before and after tDCS
across groups using a three-way analyses of variance
(ANOVA) with condition (isolated and crowded) and
test (i.e. Pre or Post) as within-subject factors, and the
stimulation protocol (i.e. bipolar-25, HD-1 mA, or
sham) as a between-subject factor. Further, to inter-
pret the significant three-way interaction effect, we
conducted two two-way ANOVAs for the isolated and
crowded conditions separately. Planned two-tailed t-
tests were then used to determine whether there were
significant differences in threshold and/or improve-
ment among the three tDCS groups in both condi-
tions. For t-tests, we used a Bonferroni correction for
multiple comparisons (corrected significance level:
0.05/3). We also noted that for each condition, there
was no significant threshold difference at Pre among
the three tDCS groups (one-way ANOVA, p> 0.249),
or between the stimulation sides (O1 or O2) within
each tDCS group (t-test, all p values> 0.05).

3. Results

3.1. Modulation of bipolar tDCS and HD-tDCS on
visual crowding effect
We first assessed the effects of bipolar-25 and HD-
1 mA tDCS on behavioral performance (i.e. orient-
ation discrimination threshold) in the three groups.
The crowding effect existed in all the three groups
as the pre-tDCS threshold in the crowded condi-
tion was significantly higher than that in the isol-
ated condition for all the groups (HD-1 mA tDCS,
t (14) = 8.94, padj < 0.001; bipolar-25 tDCS,
t (14) = 5.91, padj < 0.001; sham, t (14) = 8.30,
padj < 0.001). Furthermore, we compared the effects
of bipolar tDCS and 4 × 1 HD-tDCS on alleviating
the visual crowding.

The three-way ANOVAs revealed that the main
effect of condition and test were both statistically sig-
nificant (condition: F (1, 42) = 176.54, p < 0.001,
partial η2 = 0.808; test: F (1, 42) = 39.22, p < 0.001,
partial η2 = 0.483), as well as the interaction effect
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Figure 3. Effects of tDCS on visual crowding. (a) Orientation discrimination thresholds at Pre and Post in the isolated condition.
(b) Orientation discrimination thresholds at Pre and Post in the crowded condition. (c) Percent improvement in orientation
discrimination performance for all groups. Blue dots: subjects from the HD-1 mA group. Orange dots: subjects from the
bipolar-25 group. Yellow dots: subjects from the sham stimulation group. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. Error bars
denote 1 SEM across subjects.

of stimulation protocol ∗ test (F (2, 42) = 7.94,
p = 0.001, partial η2 = 0.274) and stimulation pro-
tocol ∗ test ∗ condition (F (2, 42) = 3.47, p = 0.040,
partial η2 = 0.142). Yet the main effect of stimula-
tion protocol was not significant (F (2, 42) = 0.12,
p = 0.887, partial η2 = 0.006), not was the interac-
tion effect of stimulation protocol ∗ condition (F (2,
42)= 0.60, p= 0.553, partial η2= 0.028) or condition
∗ test (F (1, 42)= 0.28, p= 0.598, partial η2 = 0.007).
Further, to interpret the significant three-way interac-
tion effect, we conducted two two-way ANOVAs with
test (i.e. Pre or Post) as a within-subject factor and
stimulation protocol (i.e. bipolar-25, HD-1 mA, or
sham) as a between-subject factor.

In the isolated condition, we found that the main
effect of test was significant (F (1, 42) = 47.99,
p < 0.001, partial η2 = 0.533), but the main effect
of stimulation protocol was not (F (2, 42) = 1.02,
p = 0.369, partial η2 = 0.046), and neither was the
interaction between test and stimulation protocol (F
(2,42)= 1.78, p= 0.181, partial η2 = 0.078). Planned
t-tests showed that for all three groups, the threshold
measured at Post was significantly lower than that at
Pre (HD-1 mA tDCS, t (14) = 5.44, padj < 0.001,
Cohen’s d = 1.403; bipolar-25 tDCS, t (14) = 2.79,
padj = 0.044, Cohen’s d = 0.720; sham, t (14)= 3.91,
padj = 0.005, Cohen’s d = 1.008); figure 3(a)).
However, we found no significant improvement dif-
ferences among the three stimulation groups (1-way
ANOVA, F (2, 42) = 1.59, p = 0.215, η2 = 0.071;
planned t-tests, all padjs > 0.283). Thus, the perform-
ance improvement in both the HD-1 mA and the
bipolar-25 tDCS groups could not be attributed to
the electrical stimulation. Instead, we interpret this as
simply a test-retest effect that was due to the training
during the two tests.

In the crowded condition, we found that the
main effect of test was significant (F (1, 42) = 14.52,
p < 0.001, partial η2 = 0.257), as was the inter-
action between test and stimulation protocol

(F (2, 42)= 6.67, p = 0.003, partial η2 = 0.241).
However, the main effect of stimulation protocol was
not significant (F (2, 42) = 0.03, p = 0.974, par-
tial η2 = 0.001). Planned t-tests showed that for the
HD-1 mA tDCS group, the threshold measured at
Post was significantly lower than that at Pre (HD-
1 mA tDCS, t (14) = 5.48, padj < 0.001, Cohen’s
d = 1.415); in contrast, no such effect was observed
for the bipolar-25 tDCS or sham groups (bipolar-25
tDCS, t (14)= 1.45, padj = 0.510; sham, t (14)= 0.12,
padj = 1) (figure 3(b)). Moreover, planned t-tests
after a one-way ANOVA (F (2, 42)= 6.97, p= 0.002,
η2 = 0.249) showed that the improvement in the
HD-1 mA tDCS group was significantly higher than
that in the bipolar-25 tDCS group (t (28) = 3.10,
padj = 0.013, Cohen’s d= 1.131) or in the sham group
(t (28) = 3.50, padj = 0.005, Cohen’s d = 1.278).
Moreover, no significant improvement difference
was found between the bipolar-25 tDCS and sham
groups (t (28) = 0.72, padj = 1); figure 3(c). Since
there was no significant difference in improvement
among the three groups in the isolated condition,
we conclude that subjects’ orientation sensitivity per
se could not be improved by tDCS. Thus, the per-
formance improvement of the HD-1mA tDCS group
in the crowded condition resulted from the effect of
HD-tDCS on alleviating the visual crowding effect.

At the group level, HD-1 mA tDCS, but not
bipolar-25 tDCS, was effective in alleviating the
visual crowding effect. However, we noted that there
were large inter-individual variations in the subjects’
improvement and post-tDCS performance in both
groups. Therefore, we next attempted to develop a
model capable of accounting for these variations.

3.2. Inter-individual variations in the electric field
distribution
We investigated tDCS-induced electric field distri-
butions in the brain by performing individual sim-
ulations based on realistic head models of subjects
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Figure 4. Inter-individual variations in the electric field distribution. (a) Simulation results in the bipolar-25 tDCS group.
(b) Simulation results in the HD-1 mA tDCS group. Electric field averages (unit: V m−1) and standard deviation for participants
with the stimulation electrode fixed at O1 (left) or O2 (right). Simulations were performed on the individual brain and warped
into fsaverage space.

from the bipolar-25 and HD-1 mA tDCS groups.
Peak electric field strength and focality were com-
puted for each subject. Results showed that peak
electric field strength varied from 0.12 V m−1 to
0.78 V m−1 (mean ± SD: 0.46 ± 0.21 V m−1) in the
HD-1mA group, and from 0.30 Vm−1 to 0.55 Vm−1

(mean ± SD: 0.40 ± 0.08 V m−1) in the bipolar-
25 tDCS group, respectively (supplementary figures
1 and 2). In addition, the focality of the electric field
varied from 0.03 dm2 to 2.19 dm2 (mean ± SD:
1.12 ± 0.69 dm2) in the HD-1 mA tDCS group,
and from 3.36 dm2 to 11.97 dm2 (mean ± SD:
7.94 ± 2.69 dm2) in the bipolar-25 tDCS group,
respectively. To calculate the average electric field dis-
tributions and characterize the similarity of electric
fields across subjects, simulation results were warped

into the fsaverage space. The distribution of averaged
electric field and the standard deviation are shown in
figure 4 for both tDCS groups. These results demon-
strate that in both groups, there were considerable
inter-individual variations in the tDCS-induced elec-
tric field in the brain across subjects.

3.3. Integrating pre-tDCS behavioral performance
with the focality of the electric field to predict the
effect of tDCS on visual crowding
Thus far we found substantial variations in both
the tDCS-modulated behavioral performance and the
tDCS-induced electric field in the brain. Next, we put
the behavioral and simulation results in a multiple
linear regression model (hereafter referred to as the
‘p-f model’) using pre-tDCS behavioral performance

6
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Figure 5.Model predictions. Scatterplots depict predicted post-tDCS performance plotted against observed experimental values.
Each dot represents data from a single subject in the bipolar-25 and HD-1 mA tDCS groups. The diagonals indicate the line of
perfect prediction (i.e. when predicted threshold is equal to observed threshold). Predicted thresholds were generated by (a) the
prediction model, (b) cross-validation of the prediction model.

(hereafter referred to as the ‘Pre-threshold’) and
focality as factors to determine whether the combina-
tion of inter-individual variations in pre-tDCS beha-
vioral performance and tDCS-induced electric field
among the subjects could account for the variability
in the tDCS effect. We pooled data from the bipolar-
25 and the HD-1 mA tDCS groups together because
both protocols were designed to modulate visual cor-
tex with similar tDCS mechanisms. Supplementary
figure 3 shows post-tDCS behavioral performance as
a function of pre-tDCS behavioral performance and
electric field focality of the subjects. Compared with
alternative models that contained only Pre-threshold
or focality as a single factor, the p-f model exhib-
ited the lowest Akaike’s information criterion (AIC)
score and the highest R2 (table 1). The results of
multiple linear regression analysis showed that the
combination of the two factors explained 65.99% of
the variance in post-tDCS behavioral performance
(R2 = 0.66, F (2, 19)= 18.43, p< 0.001; figure 5(a)).
Moreover, both factors predicted the post-tDCS
behavioral performance significantly (Pre-threshold,
beta = 0.59, t (19) = 5.19, p < 0.001; focality,
beta = 0.40, t (19) = 3.77, p = 0.001). Additionally,
we analyzed the performance of the full model (the
model contained the interaction term Pre-threshold ∗

focality) and results showed that the interaction effect
was not significant, nor was the effect of the factor
focality (Pre-threshold, beta = 0.48, t (19) = 2.40,
p = 0.028; focality, beta = 0.08, t (19) = 0.16,
p = 0.876; Pre-threshold ∗ focality, beta = 0.02, t
(19)= 0.67, p= 0.512). This full model could explain
66.82% of the variance in post-tDCS behavioral per-
formance (R2 = 0.67, F (3, 18) = 12.08, p < 0.001).
Considering the comparable R2 but higher AIC value
of the full model (AIC= 38.55, table 1), the p-fmodel
was a more appropriate model. These results demon-
strate that the inter-individual variability in the effect
of tDCS on visual crowding induced by both proto-
cols could be largely accounted for by variations in

Table 1. Comparison of the R2 and AIC values from different
prediction models for the crowded condition.

Model R2 AIC

Pre-threshold+ focality 0.66 35.69
Pre-threshold 0.41 44.98
Focality 0.18 52.07
Pre-threshold+ focality+ Pre-threshold
∗ focality

0.67 38.55

pre-tDCS behavioral performance and electric field
focality of the subjects.

3.4. Model validation and generalization
To obtain a more conservative estimate of the
explained variance, we performed a leave-one-out
cross-validation test of the data from the HD-1 mA
and bipolar-25 groups. The training and test proced-
ures were performed iteratively n times, with data
from n − 1 subjects for training and data from the
remaining subject for test. The results of this analysis
(figure 5(b)) show that the p-f model still explained
more than half (50.73%) of the variance in the tDCS
groups (R2 = 0.51, p< 0.001).

To investigate the generalizability of the p-f model
to other tDCS protocols, we repeated the visual
crowding experiment with two other tDCS proto-
cols: bipolar-8 tDCS and HD-2 mA tDCS. In the
crowded condition, we found that for the HD-2 mA
group, the threshold measured at Post was signific-
antly lower than that at Pre (HD-2 mA, t (14)= 3.81,
padj = 0.006, Cohen’s d = 0.984); in contrast, no
such effect was observed for the bipolar-8 tDCS group
(bipolar-8, t (14) = 1.2, padj = 0.228) (figure 6(a)).
Moreover, planned t-tests after a one-way ANOVA
(F (2, 42) = 4.19, p = 0.022, η2 = 0.166) showed
that the improvement in the HD-2 mA group was
significantly higher than that in in the sham group
(t (28)= 2.72, padj = 0.033, Cohen’s d= 0.992), while
no significant difference was observed between the
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Figure 6. Generalizability of the prediction model. (a) Orientation discrimination thresholds of the bipolar-8 and HD-2 mA
tDCS groups in the crowded condition. ∗∗∗p< 0.001. Error bars denote 1 SEM across subjects. (b) and (c) Scatterplots depict
predicted post-tDCS performance plotted against observed experimental values. Each dot represents data from (a) single subject
in (b) the bipolar-8 tDCS group and (c) the HD-2 mA tDCS group.

Table 2. Comparison of different prediction models for the crowded condition.

Model R2 AIC Sig_Pre Sig_focality

Focality-w+ Pre-threshold 0.66 35.69 ∗∗∗ ∗∗

Focality-V1+ Pre-threshold 0.59 39.56 ∗∗∗ ∗∗

Focality-V2+ Pre-threshold 0.58 40.55 ∗∗∗ ∗

Focality-V3+ Pre-threshold 0.51 43.68 ∗∗∗ n.s.
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.

improvement in the bipolar-8 group and the sham
group (t (28)= 0.90, padj = 1). Similar to the bipolar-
25 and HD-1 mA tDCS groups, remarkable inter-
individual variations in behavioral performance and
tDCS modeling were also observed in the bipolar-8
and HD-2 mA groups (figure 6(a) and supplement-
ary figures 4 and 5). We then used the p-f model
derived from the data of the HD-1 mA and bipolar-
25 tDCS groups to predict the post-tDCS perform-
ance of the subjects in the bipolar-8 and HD-2 mA
tDCS groups. It was found that the p-f model could
explain a considerable proportion of the variance in
the post-tDCS performance of the bipolar-8 group
(R2 = 0.74, p= 0.003; figure 6(b)). For the HD-2 mA
group, the predictionmodel explained approximately
39.53% of the variance and was statistically signific-
ant (R2 = 0.40, p = 0.038; figure 6(c)). These find-
ings demonstrate the robustness and generalizability
of the p-f model, and suggest that it is a powerful tool
for predicting the effects of various tDCS protocols.

3.5. ROI analysis on the modulated brain regions
To quantify what regions of the brain were being
stimulated by tDCS protocols in this work, we sep-
arately applied focality-V1, focalty-V2, or focality-V3
together with pre-tDCS behavioral performance to
the regression model (referred to as ‘p-V1 model’, ‘p-
V2model’, and ‘p-V3model’, respectively) that aimed
at predicting the post-tDCS behavioral performance.
Results showed that the p-V1, p-V2, and p-V3 model
could explain 59.45%, 57.59%, and 51.10% of the
variance, respectively (the p-V1 model, R2 = 0.59,
F (2, 19) = 13.93, p < 0.001; the p-V2 model,

R2 = 0.58, F (2, 19) = 12.90, p < 0.001; the p-
V3 model, R2 = 0.51, F (2, 19) = 9.93, p = 0.001;
supplementary figure 6, table 2). We found that the
factors focality-V1 and focality-V2 significantly pre-
dicted the post-tDCS behavioral performance, while
factor focality-V3 did not (The p-V1 model: pre-
tDCS threshold, beta= 0.56, t (19)= 4.55, p< 0.001;
focality-V1, beta = 0.12, t (19) = 2.98, p = 0.008.
The p-V2 model: pre-tDCS threshold, beta = 0.57,
t (19) = 4.55, p < 0.001; focality-V2, beta = 0.15, t
(19) = 2.77, p = 0.012. The p-V3 model: pre-tDCS
threshold, beta = 0.58, t (19) = 4.24, p < 0.001;
focality-V3, beta = 0.19, t (19) = 2.03, p = 0.057.
Table 2). These results demonstrate that the V1 and
V2 are likely to be the functional regions that are
responsible for the crowding effect, which are con-
sistent with previous studies concerning the neural
mechanism of visual crowding [33–36].

4. Discussion

In this work, we demonstrate that variability in tDCS-
induced modulation of visual crowding could be pre-
dicted by integrating individual pre-tDCS behavioral
performance and tDCS electric field simulation res-
ult. Approximately 66% of the variance in post-tDCS
performance in the bipolar andHD-tDCS groups was
explained by these two factors. Furthermore, the pre-
diction model developed here was found to be gener-
alizable to other two protocols with a different elec-
trode size or a stimulation intensity. To our know-
ledge, this is the first model integrating pre-tDCS
behavioral performance and electric field focality to
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predict the effects ofmultiple tDCSprotocols onpost-
tDCS behavioral performance.

Generally, tDCS studies using the double-blind
design would be more reliable. In the current study,
we assigned each subject to one of the five tDCS
groups before the start of the experiment. The experi-
ment consisted of three phases (i.e. pre-tDCS test, off-
line tDCS, and post-tDCS test), which took each sub-
ject about 1.5–2 continuous hours. The subject’s per-
formance data was transferred from the experiment
computer to the data analysis computer after the three
phases. Since we did not know subjects’ performance
before tDCS, it is very close to a double-blind design.
In this way, we eliminated the experimenter bias in
the single-blind experiment.

Our behavioral results revealed that protocols
using HD-tDCS (at 1 mA or 2 mA) could signific-
antly alleviate the visual crowding effect, while pro-
tocols using bipolar tDCS (with either 25 cm2 or
8 cm2 electrodes) could not. According to the sim-
ulation results based on sophisticated electrode and
realistic head models, the HD-tDCS protocols con-
strained the electric field in less brain areas by pos-
itioning four returning electrodes around the stim-
ulation electrode. Obviously, the HD-tDCS is more
focal and possible to avoid activating brain regions
irrelevant to crowding effect. We speculate that the
HD-tDCS protocols are more effective than bipolar
protocols inmodulating neural activity in early visual
cortex—i.e. activity that is closely associated with the
visual crowding effect [33–36]. It should be noted that
this claim is based on group-level results. It ignores
the influence of non-optimal targeting on individual-
level modulatory effects, as well as the resulting low-
and non-responders. Theoretically, there should be
some optimal tDCS montage specially targeting on
the related brain region for each subject to alleviate
individual visual crowding effect. Here, as a pre-step
for future development of the optimized tDCS pro-
tocols, we proposed a model that could successfully
predict the effects of tDCS at the individual level. The
modelmade continuous predictions of subjects’ post-
tDCS orientation discrimination thresholds. In addi-
tion, our proposed model provides a comprehens-
ive explanation of the causes of inter-individual vari-
ability in post-tDCS performance. Further study of
the effects specified in our model may help guide the
tuning required for individualized tDCS protocols.
For example, the positive weight of the focality factor
in the prediction model highlights the necessity of
exploiting algorithms aiming at optimizing electrode
placement and current dosage to maximize stimula-
tion focality [49, 50].

It is worth noting that, in order to verify the sim-
ulation results of the current study, we compared the
electric field distribution pattern and peak electric
field strength with previous studies [1, 51, 52]. The

HD-tDCS simulation results were consistent with a
modeling study using similar montage and stimula-
tion intensity [1]. Furthermore, our simulation res-
ults were comparable with a previous direct measure-
ment study by Huang et al, which showed a peak elec-
tric field strength of 0.4 V m−1 for 1 mA stimulation
and 0.8 V m−1 for 2 mA stimulation [52].

To date, the field strength necessary to modulate
neuronal activity is still controversial. The strength of
the tDCS-induced electric fields necessary to mod-
ulate neuronal activity depends on various factors,
including the specific area of the brain being stim-
ulated, the type of neurons being targeted, and the
frequency and duration of the stimulation. Evidence
derived from animal models suggests that the electric
field threshold for neural activation is in the range of
0.2 V m−1–0.5 V m−1 [53–57]. Even electric fields
as weak as 0.2 V m−1 can have an impact on neural
recordings [55], and the potential mechanism of such
low-intensity electrical stimulation was explained by
the changes in spike probability and timing [56, 58].
However, conclusions from animal models are based
on brain slices or neural assemblies targeted by intra-
cranial electrodes, and may not be directly general-
izable for human studies [44]. Recently, Kasten et al
used electric field modeling and neuroimaging to
explain the variability of transcranial alternating cur-
rent stimulation effects, and they showed that the
electric field strength necessary to elicit stimulation
effects in humans may be smaller than the thresholds
estimated using animal models [44]. Accordingly, we
defined electric field focality by assuming the electric
field threshold in humans to be 0.1 V m−1. Our res-
ults demonstrate that the focality factor defined here
is a significant predictor of the modulatory effect on
visual crowding.

The objective of our study was to develop a
prediction model suitable for the most commonly
used tDCS protocols (bipolar-25 tDCS and HD-
1 mA tDCS). The proposed model enabled us to pre-
dict the post-tDCS performance based on a subject’s
pre-tDCS behavioral performance and head model.
Additionally, the model based on the commonly used
tDCS protocols was found to be transferable to the
other two protocols using different electrode sizes or
different stimulation intensities (bipolar-8 and HD-
2 mA tDCS). Notably, when the model was applied
to the data from the bipolar-8 and HD-2 mA tDCS
groups, the form of the prediction model and the
coefficients of each predictor were the same as those
generated from the training. Compared to a model
that only retains the form of the predictionmodel but
regenerates the coefficients of the predictors and the
constant term with new data, the model generaliza-
tion test in our studywasmore stringent andprovided
greater practical value. In terms of the sample size
of each tDCS group, it was determined based on
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previous tDCS studies that have examined the effects
on cognition [20, 32, 59, 60]. Moreover, the effect
sizes of HD-tDCS on visual crowding, as well as the
proposed model on predicting the post-tDCS per-
formance, were moderate to strong.

Our study provides the first tests of the model’s
prediction performance in multiple tDCS protocols.
The generalizability analysis showed that our model
could capably predict the variability in post-tDCS
performance of the bipolar-8 tDCS group. However,
for the 2 mA HD-tDCS group, our model explained
only 40% of the variance in post-tDCS perform-
ance. We speculate that the weaker performance for
the HD-2 mA tDCS protocol is due to a nonlin-
ear relationship between stimulation intensity and
tDCS effect. Accordingly, tDCS-induced facilitation
of cortical excitability may be due to synaptic mech-
anisms associated with long-term potentiation [61].
Increasing stimulation intensity therefore does not
necessarily enhance tDCS effects [61–66]. Thus, when
directly generalizing a linear model developed using
data from the 1 mA tDCS group to the 2 mA tDCS
group, the model’s performance was barely satis-
factory. Moreover, one limitation regarding the pre-
diction model in this case is the definition of the
stimulation-induced electric field, which is based on
the normal value of the electric field and ignores
its relative direction to the cortical surface. Previous
work has demonstrated that perpendicular and par-
allel components of the electric field might con-
tribute differently to the stimulation effects [67].
Future work may incorporate these components into
a regression model to investigate their effects on the
visual crowding task. In addition, despite signific-
antly predicting the effects of different tDCS proto-
cols on visual crowding, whether the proposed model
will still work well for other cognitive tasks remains
unknown. Future work should assess the generalizab-
ility of our model for different tasks.

5. Conclusion

tDCS has shown great promise in enhancing brain
function. Considerable research has focused on
identifying reliable and stable stimulation proto-
cols that could be applied for clinical uses [68–70].
Identifying the key factors determining the effects of
tDCS is crucial for the design of individualized stim-
ulation protocols. In the current work, we propose an
efficient model that can reinforce our understanding
of the contribution of individual pre-tDCS behavi-
oral performance and electric field distribution on the
variability in inter-individual tDCS outcomes. This
data may help define the objective function for target
optimization when multiple electrodes are used for
individualized tDCS protocols, and this in turn may
have implications for future experimental and thera-
peutic tDCS applications.
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